
Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

16

F a c h b e i t r a g

Realizing Hybrid Planning Systems
as Modern Software Environments

Bernd Schattenberg, Steffen Balzer, Susanne Biundo

We present an architecture for planning and scheduling systems that addresses key requirements of real-world ap-
plications in a unique manner. It provides a robust, scalable, and flexible framework through the use of industrial-
strength middleware and multi-agent technology. The architectural concepts extend knowledge-based components
that dynamically perform and verify the system’s configuration; standardized components and communication pro-
tocols allow a seamless integration with third-party libraries and application environments. The system is based
on a proper formal account of hybrid planning, the integration of HTN and POCL planning. The framework allows
to decouple the detection of plan flaws, the computation of plan modifications, and search control. Consequently,
planning and scheduling capabilities can be easily combined by orchestrating respective elementary modules and
strategies. This platform can implement and evaluate various configurations of planning methods and strategies,
without jeopardizing system consistency through interfering module activity.

1 Introduction

Hybrid planning – the combination of Hierarchical Task Net-
work planning with Partial Order Causal Link techniques –
turned out to be most appropriate for complex real-world
planning applications [8] like crisis management [2, 4]. Here,
the solution of planning problems often requires the inte-
gration of planning from first principles with the utilization
of predefined plans to perform certain complex tasks.

Previous work [18] introduced a formal framework for hy-
brid planning, in which the plan generation process is prop-
erly decomposed into flaw detection and plan modification
functions. As an important feature of this approach, an ex-
plicit trigger function defines which modifications are suit-
able candidates for solving which flaws. This allows to com-
pletely separate the computation of flaws from the compu-
tation of possible plan modifications, and in turn both com-
putations can be separated from search related issues. The
system architecture relies on this separation and exploits
it in two ways: module invocation and interplay are speci-
fied through the trigger function while the explicit reason-
ing about search can be performed on the basis of flaws and
modifications without taking their actual computation into
account. This explicit representation of the planning strategy
allows for the formal definition of a variety of strategies, and
even led to the development of novel so-called flexible strate-
gies [18]. The functional decomposition induces a modular
and flexible system design, in which arbitrary planning and
scheduling system configurations can be integrated seam-
lessly. A prototype of this architecture served as an experi-
mental environment for the evaluation of flexible strategies
against conventional ones as well as a conceptual proof of
the expandability of the system with respect to new tech-
niques: the integration of scheduling [16, 17] and probabilis-
tic reasoning [1].

When actually aiming at the employment of this sim-
ple architectural nucleus in real-world applications like cri-
sis management, assistance in telemedicine, personal assis-
tance in ubiquitous computing environments, etc., additional
features are required, however. Like any other mission criti-

cal software in these contexts, also planning and scheduling
systems call for highly sophisticated software support. This
includes:
1. declarative, automated system configuration and verifica-

tion – for fast, flexible, and safe system deployment and
maintenance, and for an easy application-specific strategic
tailoring;

2. scalability, including transparency with respect to sys-
tem distribution, access mechanisms, concurrency, etc.
– for computational power on demand (including load-
balancing) without an additional burden for the system
developer;

3. standards compliance – for the integration of third-party
systems and libraries, and interfaces to other services and
software environments.
This paper describes a novel planning and scheduling

system architecture which addresses these characteristics. It
shows how the formal framework of [18] is implemented by
applying modern software technology from service oriented
computing and the Semantic Web – in particular middleware
and knowledge-based systems – and illustrates how a plan-
ning and scheduling system platform for development and
evaluation can be created this way.

2 Formal Framework

Our planning system relies on a formal specification of hy-
brid planning and scheduling [17, 18]: The approach uses
a Strips-like representation of action schemata which pro-
vide first-order literals for preconditions and effects and in-
dicate the affiliated state transitions as usual by respective
add- and delete properties. It distinguishes primitive opera-
tors and abstract actions (also called primitive and complex
tasks), the latter representing abstractions of partial plans. A
partial plan consists of complex or primitive tasks, ordering
constraints, variable bindings, and causal links to represent
the causal structure of the plan. For each complex task, at
least one method provides a partial plan for implementing it.

Planning problems are defined by an initial partial plan to
start from and a domain model – basically a set of primitive

Page 1

Realizing Hybrid Planning Systems 
as Modern Software Environments



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

17

F a c h b e i t r a g

and complex task schemata together with a set of methods
specifying possible implementations of the complex tasks. A
partial plan is a solution to a given problem, if it contains
only primitive operators, the ordering constraints and vari-
able bindings are consistent, and the causal links support
all operator preconditions without being threatened (i.e., the
plan is executable).

Flaws All defects causing a partial plan not to be a so-
lution are made explicit by so-called flaws, data structures
which describe deficiencies in the plan and in addition allow
to classify the problem. A flaw holds a set of references to the
affected plan components. The problem, for example, that a
plan step sk interferes with a causal link si, φ, sj such that it
jeopardizes sj ’s executability is represented as a causal threat
flaw (Threat, {si, φ, sj, sk}). In the context of hybrid plan-
ning, flaw classes also cover the presence of abstract actions
in the plan, ordering and variable constraint inconsistencies,
unsupported preconditions of actions, etc.

Generating flaws is encapsulated by detection modules
which are functions that take a partial plan as an argument
and return a set of flaws. Without loss of generality we as-
sume that there is exactly one such function for each flaw
class. The function for the detection of causal threats in a
plan P , for example, is defined as follows: detThreat(P ) 
(Threat, {si, φ, sj, sk}) if P ’s ordering relation allows for sk
being placed between si and sj and the variable bindings of
P are consistent with substitutions such that the effects of
sk undo the protected condition φ.

Modifications Plan refinement steps are required to obtain
a solution out of a problem specification. These steps elim-
inate flaws and are called plan modifications. They explicitly
represent changes to the plan structure and consist of sets
of elementary additions and deletions of plan components.
Adding an ordering constraint between plan steps si and sj ,
for example, is described as: (AddOrd, {⊕(si ≺ sj)}). Other
examples of hybrid planning modifications are the insertion
of new plan steps, the insertion of variable bindings and
causal links, and the expansion of complex tasks according
to appropriate methods.

As with the flaws, the generation of plan modifications
is implemented through modification modules. These func-
tions take a plan and a set of flaws as arguments and com-
pute all possible plan modifications that address the flaws.
So, “promotion” and “demotion” as an answer to a causal
threat means that modAddOrd(P, F ) contains the modifica-
tions (AddOrd, {⊕(sk ≺ si)}) and (AddOrd, {⊕(sj ≺ sk)})
if F contains a causal threat flaw (Threat, {si, φ, sj, sk}),
for example.

Refinement-based Planning Obviously some classes of
modifications address particular classes of flaws while oth-
ers do not. This relationship is explicitly represented by the
so-called modification trigger function α which relates flaw
classes to suitable modification classes. This includes, for ex-
ample, that causal threat flaws can in principle be solved
by expanding abstract actions which are involved in the
threat, by promotion or demotion, or by separating variables
through in-equality constraints (cf. [2, 18]):

α(detThreat) = modExpandTask ∪modAddOrd ∪modAddVarConstr

Apart from serving as an instruction which modification
generators to consign with which flaw, the definition of the
trigger function gives us a formal criterion for discarding
non-refineable plans: For any sets of detection and modi-
fication modules, if any single flaw is not answered by at
least one of the α-triggered modification modules, the cur-
rent plan cannot be refined into a solution.

Based on the presented modules, a generic planning al-
gorithm was developed in [18] which iteratively collects flaws
from detection modules, passes them to assigned modifica-
tion modules, and finally selects plan modifications for exe-
cution on the current plan until no more flaws are detected.
It also demonstrated how modification selection strategies
are formally defined in this framework as planning strategy
modules and illustrated their potential. Several adaptations
of strategies taken from the literature were presented, as well
as a set of novel flexible planning strategies. The latter ex-
ploit the explicit flaw and modification information, which al-
lows for selection schemata that are not defined over flaw or
modification type preferences, but perform an opportunistic
way of plan generation. In first experiments, a set of flexible
and classical, fixed strategies competed on a former planning
competition benchmark for hierarchical planning systems. It
turned out, that flexible strategies are not only competitive
to their fixed ancestors, but also show high optimization po-
tential and can easily be applied to various system configu-
rations.

3 Architecture Overview

As the expositions of the previous sections already suggest,
the basic architecture of Panda (Planning and Acting in a
Network Decomposition Architecture) is that of a multi-agent
based blackboard system. The blackboard holds the partial
plan and agent societies map directly on the module struc-
ture, with the agent metaphor providing maximum flexibility
for the implementation.

Inspector agents are incarnations of flaw detection mod-
ules, Constructors that of plan modification generating mod-
ules. The system additionally introduces so-called Assistants
that provide shared inferences and services which are re-
quired by other agents. They propagate, for example, impli-
cations of temporal action information transparently into the
ordering constraints [17]. Strategies finally implement plan-
ning strategy modules which control the search process by
selecting plan modification steps for application to the plan.

Figure 1 shows the reference planning model for Panda
which defines the agent interaction. One planning cycle cor-
responds to one iteration of a classical monolithic planning
algorithm. It is divided into 4 phases, in which the agents are
executed concurrently.
Phase 1: Assistants repeatedly infer information and post it

on the blackboard until an inferential closure is reached
(the “assistant cycle”).

Phase 2: Inspectors analyze the current plan on the black-
board and report their detected flaws to the strategy and
the constructors assigned to them by the trigger function.

Phase 3: Constructors compute all possible modifications
for the received flaws and send them to the strategy.

Phase 4: The strategy compares all received results from in-
spectors and constructors and selects one plan modifica-
tion to be executed on the current plan. One planning

Page 2



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

18

F a c h b e i t r a g

Strategy

Inspector

Constructor

Assistant

Phase 1: make expertises

Modification cycle

Assistant cycle

Phase 2: detect flaws

Phase 3: compute modifications

Phase 4:
modify

blackboard

Figure 1: The reference planning process model for Panda.

cycle is hereby completed and the system continues with
phase 1.

Phase transitions are performed by the strategy when all
participating agents have finished execution and can thus
be viewed as synchronization points within the process. The
strategy modifies the plan until no more flaws are detected
or until an inspector publishes a flaw for which no resolution
is issued. In the first case the current plan constitutes a so-
lution to the given planning problem, in the latter case the
system has to backtrack and executes a different modifica-
tion according to the strategy’s stack of previous choices.

4 Knowledge-based Middleware

Core Components A direct implementation of the refer-
ence process model uses a single computational resource,
processor, Java Virtual Machine, etc. For crisis management
support, information must be however gathered from dis-
tributed and even mobile sources, the planning process re-
quires a lot of computational power, solutions have to be dis-
tributed, etc. Thus scalability and distribution play key roles
in the proposed system architecture, while maintaining the –
simple but effective – reference process.

The main aspect in middleware systems like application
servers is to hide the complexity of managing distributed
objects and to provide abstract interfaces to the program-
mer. In other words, they make distribution issues trans-
parent. Transparency in middleware systems covers location
transparency, scalability transparency, access transparency,
and concurrency transparency [7]. Scalability transparency,
for example, hides the mechanisms how a middleware sys-
tem scales in response to a growing load (allocating new
computational resources on demand, etc.).

Panda builds on the application server JBoss [19], an im-
plementation of the Java 2 Enterprise Edition – J2EE specifica-
tion [20]. This standard provides a programming model for
distributed applications, programming interfaces, and sys-
tem policies. For this presentation we focus on three core
technologies. The so-called Enterprise Java Beans – EJBs are
the objects that are managed by an application server. They
are the building blocks of a distributed J2EE application and
all transparency aspects apply to them. A system wide di-
rectory service provides location and access transparency for
all EJBs and services in the application server. Finally, a mes-
saging service establishes asynchronous and location trans-
parent communication between Java components (especially
EJBs) beyond virtual machine boundaries. Panda uses such
EJBs, for example, for modeling the blackboard and for con-

necting a client application to the Panda system (clients ob-
tain an interface by querying JBoss’s directory service).

The second core component for implementing all agent
specific features is BlueJADE [5], an agent platform that is
integrated into the JBoss service structure and that is com-
pliant to standards defined by the Foundation for Intelligent
Physical Agents (FIPA). This sub-system puts the agent life-
cycle under full control of the application server, thus all dis-
tribution capabilities of the application server apply to the
agent societies. It also provides standardized protocols on
top of the J2EE message facility. Agents can therefore be
spread transparently over several agent containers on differ-
ent nodes in a network, including the migration of running
agents between containers. It has to be noted, that this kind
of distribution management differs from the correspond-
ing middleware service: agent migration typically anticipates
pro-actively the computation or communication load in a rea-
soning process, while middleware migration reacts on such
load changes based on very low-level operating system spe-
cific sensors. It makes sense to provide both mechanisms in
parallel, for example, to migrate in advance scheduling in-
spector agents which are known to require much computa-
tional resources onto dedicated compute servers. BlueJade’s
LEAP extension [3] adds support for ubiquitous computing.
Agents are able to run even on mobile devices like PDAs,
which provides Panda with convenient client interfaces for
many application domains.

The knowledge representation and reasoning facilities
which are used throughout the system constitute the third
core component. During its development, the Panda frame-
work required an increasing amount of knowledge that
represents planning related concepts (flaw and modifica-
tion classes, the trigger function), the system configuration
(which agents to deploy), and the plan generation process
itself (the reference process, including the backtracking pro-
cedure, etc.). Most of this knowledge is typically represented
implicitly inside algorithms and data structures. To make it
explicit and modifiable without touching the system’s imple-
mentation, it must be extracted and represented in a com-
mon knowledge base which uses a representation formalism
that is expressive enough to capture all modeling aspects on
one side and that allows efficient reasoning on the other side.
As a result of this, the system can be configured generically
and that configuration can be verified on a higher semantic
level. There is a large number of knowledge representation
systems available on the market which promise to meet the
requirements. The DARPA Agent Markup Language – DAML
[13] has been chosen as the grounding representation for-
malism for this task, which combines the key features of de-
scription logics with Internet standards such as XML or RDF
[14].

There exist powerful reasoners and libraries to integrate
this language into applications, including mappings between
the encoded knowledge and an object model. RACER [12]
is Panda’s description logic system to store knowledge and
to reason about it. It has the essential capabilities that are
required: a DAML codec, an efficient reasoning component,
and a knowledge store based on a client-server architec-
ture. The RACER-server is integrated via EJB proxies, hence
all agents have transparent access to their personal request
queue.

Page 3



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

19

F a c h b e i t r a g

Inspector1Inspector1

JADE Services

Agent

PandaAgent

Strategy

WorkerAgent

Inspector Constructor Assistant

Strategy

J
A
D
E

P
a
n
d
a

Interaction Protocols
Communication Mgmt.
Life-Cycle Mgmt.

TheStrategy Inspector1 Constructor1
Inspector1
Assistant1

Bean Connections
ABox Handling

Sub Cycle Mgmt.
Backtracking

Cycle Control
Worker Implementation

Figure 2: The logical layer structure of the agent framework.

By using DAML as the content language for the BlueJADE
agent communication and also as the language for describ-
ing the system configuration and communication means, a
homogeneous representation is realized in the Panda sys-
tem.

The System Structure Two main classes of agents exist in
the BlueJADE agent container. The first is the class of stan-
dard agents that come with the BlueJADE software package.
They provide the FIPA infrastructure, BlueJADE specific com-
munication services, etc. The role of Gateway agents, for ex-
ample, is to mediate messages between BlueJADE agents
and components outside the agent container. The Panda
agents form the second class in the agent container. The
PandaAgent class on its part is derived transitively from the
BlueJADE agent base class Agent which provides the inte-
gration into the agent system (cf. Figure 2). It encapsulates
low level data conversion and communication mechanisms.
All agent types from the reference model are derived from
PandaAgent.

The reference model in Fig. 1 omits the actual means for
calling agents: (remote) calls are typically message based in
distributed applications. From the container’s point of view,
agents in the BlueJADE agent container and the proxy EJBs
communicate by using messages encoded in the agent com-
munication language FIPA-ACL [10]. ACL is based on the
speech-act theory, in which every message describes an ac-
tion that is intended to be carried out with that message
simultaneously, for example, requests like “compute detec-
tions”. Such intentions are called performatives and ACL de-
fines formal semantics for them [9]. They induce basic in-
teraction protocols upon which more complex protocols like
contract nets and auctions are built.

Besides parameters that are generally necessary for com-
munication like sender, receiver, etc., ACL messages include
parameters that describe the content that is intended for the
receiving participant: the language the content is encoded
in, the domain the content refers to, etc.

The Planning Process Figure 3 shows the refined model
of the planning process that is implemented in the Panda
system. The white colored states specify the life-cycle man-
agement of a planning session (initializing the process, start-
ing planning, suspending it, etc.). Each state transition is la-
beled with the triggering ACL message and its originator:
sender:performative followed by action or proposition.
Senders can also be described by their class. Worker denotes

the worker agent classes of inspectors, constructors, and as-
sistants, for example. The same applies to propositions and
actions: Compute denotes the action Compute and all sub-
actions like Inspect, Construct, etc.

The planning process starts in a state in which all agents
are deployed and send agreements for their initialization pro-
cess. After that, the strategy informs all agents, that the sys-
tem is initialized; this is where the reference model starts
with phase 1: The assistants are requested to perform their
inference on which they have to agree. After their processing
(leaving the assisting state), the inspectors are requested to
search for flaws (phase 2), and so on.

Most states in the figure are abstract in order to reduce
complexity of the state automaton while maintaining a de-
gree of granularity that allows the user to monitor the plan-
ning process. The state backtracking, for example, summa-
rizes all possible sub-states that describe the interaction be-
tween a particular worker agent and the strategy while inter-
rupting and setting back the agent.

The refined planning process model has two major im-
provements: First, it extends agent concurrency. The ref-
erence planning process model in Fig. 1 synchronizes the
agent classes such that concurrency is only allowed within
a particular phase. But the agents’ execution can interleave
in particular between phases 2 and 3, so that every con-
structor can start pro-actively its computations as soon as
it received all flaws of all its α-assigned inspectors. The re-
fined process model reflects this autonomy by a combined
inspecting&constructing state in which some constructors
are executed in parallel with detectors.

Second, optimized and more sophisticated reasoning
techniques can be implemented with an enhanced back-
tracking procedure that allows assistants, inspectors, and
constructors to maintain a local memory (for caching, etc.).
Worker agents now participate actively in the backtracking
process in order to keep backtracking consistent: they syn-
chronize after an interrupt request by the strategy via agree-
ment statements (cf. state transitions from backtracking).
The restart of the system has to be negotiated afterwards to
ensure that all agents have finished their local backtracking
procedures.

With this mechanism, the extended concurrency pays
off in terms of system performance, because the system is
now able to backtrack immediately in early fail situations like
“fast” inspectors without assigned constructors for publish-
ing flaws. This is in fact the case for most of the inconsisten-
cies that occur in the constraint sets: they are unrepairable.

Ontology-based Components DAML is used as the uni-
versal representation formalism to describe and share knowl-
edge in the Panda system, ranging from flaw communication
to system state transitioning. It is one of the emerging stan-
dards in the Semantic Web community for representing and
communicating knowledge [13]. It ensures interoperability
with third-party systems like RACER and forms the basis for
communicating knowledge among agents. Most important,
it enables knowledge to be represented in a uniform, explicit,
and declarative manner, so the system becomes more robust,
flexible, and maintainable.

In order to be able to use DAML as a content language
for ACL messages with their speech act structure, at least ac-

Page 4



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

20

F a c h b e i t r a g

...

Figure 3: The refined Panda planning process model.

ContentLanguageElement

Action

Proposition

Argument

Compute

Backtrack

Construct

Inspect

Assist

CycleNumber

hasArgumenthasArgument

Backtracked

Failed

Computed

Assisted

Inspected

Constructed

PlanGenerationElement

hasResult

Modification

Expertise

Flaw

xsd:Decimal

hasCycleNumber

hasResult

hasResult

hasResult

xsd:String

hasMessage

Figure 4: The content language ontology.

tions and propositions must be representable [15]. This is suf-
ficient for the needs of Panda. Figure 4 shows the ontology
that provides the concepts to enable DAML-based communi-
cation (property cardinalities have been omitted for clarity).

Actions can have arguments, for example, the action sub-
concept Backtrack must come with a CycleNumber whose
value is represented as the XML-schema type decimal. In
Panda, every argument of an action is modeled in the ontol-
ogy in order to give it formal semantics. Therefore, in contrast
to [15], the arguments’ order does not have to be considered.
Propositions are currently only used to represent action re-
sults. The result sub-concept Computed has an argument of

type PlanGenerationElement: For example, a Constructed
proposition has a Modification element as a result. The con-
tent of an ACL message is represented by instances of the
Panda system ontology embedded in a DAML document.
Encoding and decoding of DAML message content is per-
formed by third-party libraries which synchronize the agents’
object models with the ontology.

DAML plays its second key role in the automated config-
uration of the agent container (Figure 5 shows the under-
lying ontology). The configuration process is composed of
two steps. First, the agents that are part of the planning pro-
cess are instantiated. The client proxy EJB initializes the sys-
tem start-up and uses the RACER reasoner to derive the leaf
concepts of PandaAgent and to determine the implemen-
tation assignments ImplementationElements of the worker
agents. In Figure 5, for example, the assigned implementa-
tion for agent Inspector1 is an instance of the Java class
panda.jade.agent.Inspector1Impl. After their creation, the
Panda agents insert their descriptions as instances into the
system ontology so that the ontology reasoner can keep
track of deployed agent instances.

The second configuration step is to implement the trigger
function α by establishing communication channels between
the respective agents instances. RACER is used by each Panda
agent on startup to derive its communication links from and
to other agents. This is done by using the system configu-
ration ontology to derive the dependencies between agents
from defined dependencies between the flaws and modifi-
cations: The ontology specifies, which agent instance imple-
ments which type of Inspector and Constructor agent. The
RACER reasoner derives from this information, which flaw

Page 5



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

21

F a c h b e i t r a g

PlanGenerationElement
Modification

Expertise

Flaw

SystemConfigElement

PandaAgent

PandaBean

Controller

Worker

Service

Flaw1

Flaw2

Flaw11

Flaw12

Mod1

Mod2

Inspector

Constructor

Assistant

Exp1

Inspector1

Inspector2

Constructor1

Constructor2

Assistant1

PandaSessionBean

Strategy

ImplementationElement WorkerThread

panda.jade.agent.Inspector1Impl

panda.jade.agent.Inspector2Impl

panda.jade.agent.Constructor1Impl

panda.jade.agent.Constructor2Impl

panda.jade.agent.Assistant1Impl

generates

generates

generates

generates

generatedBy

generatedBy

generatedBy

generates

solvedBy

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

hasImpl

solvedBy solvedBy

Concept

subClassOf

Property

Figure 5: The system configuration ontology.

and modification types the agent instances will generate. If
the system configuration ontology includes an α-relationship
between them (solved-by), the agent instances’ communi-
cation ports are linked.

Based upon the subsumption capabilities that come with
DAML and description logics, it is even possible to exploit
sub-class relationships between PlanGenerationElements
(illustrated by the bold printed concept connections in Fig. 5).
An example for a modification class hierarchy are ordering
relation manipulations with sub-classes promotion and de-
motion. Regarding flaws, the system ontology distinguishes
primitive open preconditions and those involving reasoning
over decomposition axioms [2].

A knowledge based configuration offers even more ben-
efits: Imagine a less informed configuration mechanism, say,
reading a respective file in XML format, that holds the de-
scriptions on the agents to be loaded and the message links
to be established between them as a representation of the
trigger function α. Configuration verification can then only
be based on type checking by the Virtual Machine’s class
loader. In the presented architecture, the system model can
be checked on startup for specific properties of the configu-
ration in a verification step of the planning process in state
initializing (Fig. 3). Examples are inconsistencies like con-
structors without assigned flaws (and consequently no in-
spector) and potential mis-configurations like flaw and mod-
ification classes for which no generating agent implementa-
tions are provided, etc.

5 Related Work

There are two major agent-based planning architectures on
the market. In the O-Plan system [22], a blackboard is exam-
ined by combined inspector and constructor modules that
write their individually highest ranked flaw on the agenda

of a search controller. This controller selects one agenda en-
try and triggers the respective module to perform its high-
est prioritized modification. O-Plan has been extended by a
workflow-oriented infrastructure with a plug-in mechanism
that serves as an interface to various (application tailored)
tools [21]. The planning engine itself is a monolithic sys-
tem structure. The Multi-agent Planning Architecture [23] is
based on a generic agent-based distributed problem solv-
ing approach. It executes an agent society in which desig-
nated coordinators decompose the planning problem into
sub-problems which are solved by subordinated groups of
agents that may again decompose the problem again. In-
dividual solutions are returned to the associated managers
which are responsible for synthesizing global solutions. Com-
munication of queries and results is based on the KQML for-
malism which is quite similar to FIPA-ACL.

The SIADEX architecture [6] uses XML-RPCs for building a
distributed planning environment, that is accessible via stan-
dardized HTTP and Java protocols. The architecture decou-
ples a monolithic planning server, knowledge base manage-
ment, and execution monitoring.

A representative for an application framework for build-
ing planning applications is Aspen [11]. It provides planning-
specific data infrastructure, supportive inference mecha-
nisms, and algorithmic templates, in order to facilitate rapid
development of non-distributed planning applications “out-
of-the-box”.

6 Conclusions

We have presented a novel architecture for planning systems.
It relies on a formal account of hybrid planning, which al-
lows to decouple flaw detection, modification computation,
and search control [18]. Planning capabilities like partial or-
der planning and abstraction techniques can easily be com-

Page 6



Auszug aus: Künstliche Intelligenz, Heft 1/2007, ISSN 0933-1875, BöttcherIT Verlag, Bremen, www.kuenstliche-intelligenz.de/order

KI	 1/07

22

F a c h b e i t r a g

bined by orchestrating respective elementary modules and
an appropriate strategy module – in particular flexible strat-
egy modules. The implemented system can be employed as a
platform to implement and evaluate various planning meth-
ods and strategies. It can be easily extended to additional
functionality, like integrated scheduling [16, 17] and prob-
abilistic reasoning [1], without jeopardizing system consis-
tency through interfering activity.

This work has investigated three main aspects regarding
the Panda planning system architecture. Using knowledge
representation and inference techniques extends the capa-
bilities of the system significantly. The verification of system
configurations can be performed on an abstract level and
the system becomes more flexible and safely manageable
the more hard-coded knowledge is extracted and described
declaratively. With the use of application server technology
and standardized communication protocols, Panda has laid
the foundation for a distributed system that is able to address
real-world application scenarios in an adequate manner.

We plan to deploy this system as a central component
in projects for assistance in telemedicine applications as well
as for personal assistance in ubiquitous computing environ-
ments.

References
[1] S. Biundo, R. Holzer, and B. Schattenberg. Project planning under

temporal uncertainty. In Planning, Scheduling, and Constraint Satis-
faction: From Theory to Practice, pages 189–198. IOS Press, 2005.

[2] S. Biundo and B. Schattenberg. From abstract crisis to concrete
relief – A preliminary report on combining state abstraction and
HTN planning. In Proceedings of the 6th European Conference on
Planning (ECP-01), 2001.

[3] G. Caire. LEAP users guide, 2005. http://jade.tilab.com/doc/
LEAPUserGuide.pdf.

[4] L. Castillo, J. Fdez-Olivares, and A. González. On the adequacy of
hierarchical planning characteristics for real-world problem solving.
In Proceedings of the 6th European Conference on Planning (ECP-01),
2001.

[5] D. Cowan and M. Griss. Making software agent technology avail-
able to enterprise applications. Technical Report HPL-2002-211,
Software Technology Laboratory, HP Laboratories, 2002.

[6] M. de la Asunción, L. Castillo, J. Fdez.-Olivares, O. García-Pérez,
A. González, and F. Palao. Knowledge and plan execution manage-
ment in planning fire fighting operations. In Planning, Scheduling,
and Constraint Satisfaction: From Theory to Practice, pages 159–168.
IOS Press, 2005.

[7] W. Emmerich. Engineering Distributed Objects. Wiley, 2000.

[8] T. A. Estlin, S. A. Chien, and X. Wang. An argument for a hybrid
HTN/operator-based approach to planning. In Proceedings of the
4th European Conference on Planning (ECP-97), volume 1348 of LNAI,
pages 182–194. Springer, 1997.

[9] FIPA - Foundation for Intelligent Physical Agents. FIPA-ACL Commu-
nicative Act Library Specification, 2002. http://www.fipa.org/specs/
fipa00037/SC00037J.pdf.

[10] FIPA - Foundation for Intelligent Physical Agents. FIPA-
ACL Message Structure Specification, 2002. http://www.fipa.org/
specs/fipa00061/SC00061G.pdf.

[11] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Towards an ap-
plication framework for automated planning and scheduling. In
Proceedings of the 1997 International Symp. on AI, Robotics & Au-
tomation for Space, 1997.

[12] V. Haarslev and R. Möller. Description of the racer system and its
applications. In Working Notes of the 2001 International Description
Logics Workshop (DL-2001), volume 49 of CEUR Workshop Proceed-
ings, 2001.

[13] I. Horrocks, F. Harmelen, and P. Patel-Schneider. DAML+OIL
Specification (March 2001), 2001. http://www.daml.org/2001/03/
daml+oil-index.html.

[14] F. Manola and E. Miller. RDF primer, 2004. http://www.w3.org/
TR/rdf-primer/.

[15] M. Schalk, T. Liebig, T. Illmann, and F. Kargl. Combining FIPA ACL
with DAML+OIL - a case study. In Proceedings of the Second Inter-
national Workshop on Ontologies in Agent Systems, 2002.

[16] B. Schattenberg and S. Biundo. On the identification and use of
hierarchical resources in planning and scheduling. In Proceedings
of the 6th International Conference on Artificial Intelligence Planning
Systems (AIPS-02), pages 263–272. AAAI, 2002.

[17] B. Schattenberg and S. Biundo. A unifying framework for hybrid
planning and scheduling. In Proceedings of the 29th German Con-
ference on Artificial Intelligence (KI 2006), LNAI. Springer, 2006. to
appear.

[18] B. Schattenberg, A. Weigl, and S. Biundo. Hybrid planning using
flexible strategies. In Proceedings of the 28th German Conference on
Artificial Intelligence (KI 2005), volume 3698 of LNAI, pages 258–272.
Springer, 2005.

[19] S. Stark. JBoss Administration and Development. JBoss Group, LLC,
second edition, 2003. JBoss Version 3.0.5.

[20] Sun Microsystems. Simplified Guide to the Java 2 Platform, Enterprise
Edition, 1999. http://java.sun.com/j2ee/white/j2eeguide.pdf.

[21] A. Tate. Intelligible AI planning. In Proceedings of the 20th British
Computer Society Special Group on Expert Systems International Con-
ference on Knowledge Based Systems and Applied Artificial Intelli-
gence, pages 3–16. Springer, 2000.

[22] A. Tate, B. Drabble, and R. Kirby. O-Plan2: An architecture for com-
mand, planning and control. In Intelligent Scheduling, pages 213–
240. Morgan Kaufmann, 1994.

[23] D. Wilkins and K. Myers. A multiagent planning architecture. In Pro-
ceedings of the 4th International Conference on Artificial Intelligence
Planning Systems (AIPS-98), pages 154–163. AAAI, 1998.

Contact
Prof. Dr. Susanne Biundo
Department of Artificial Intelligence
Ulm University, 89069 Ulm, Germany
Tel.: +49 (0)731-5024121
http://www.informatik.uni-ulm.de/ki/

Susanne Biundo is a Professor of Computer Sci-

ence at the University of Ulm. Her research

interests include Artificial Intelligence Planning

and Scheduling, Automated Reasoning, and Multi-

agent Technology. She was the director of PLANET,

the European Network of Excellence in AI Planning,

from 1998–2003.

Bernd Schattenberg is a research assistant at the

department of Artificial Intelligence of the Univer-

sity of Ulm. His main research interests are the in-

tegration of planning and scheduling methods and

their application to complex real-world scenarios.

Steffen Balzer studied computer science at the

University of Ulm, where he worked as a research

assistant in the field of Semantic Web Services. He

is now engaged as a consultant for Service Ori-

ented Architectures at IT-Informatik GmbH.

Page 7


